Управление образования города Калуги Муниципальное бюджетное образовательное учреждение «Средняя общеобразовательная школа №29» города Калуги

ПРИНЯТА

педагогическим советом протокол №11 от «28 мая» 2024 г.

Дополнительная общеразвивающая программа технической направленности «Робототехника»

Возраст учащихся: 10-17 лет Срок реализации: 3 года

Составитель: Золотова Лилия Гививна Должность: заместитель директора по BP

ПАСПОРТ ПРОГРАММЫ

Полное название программы	Дополнительная общеобразовательная
	общеразвивающая программа «Робототехника».
Составитель программы,	Золотова Л.Г., заместитель директора по ВР
должность	
Адрес реализации программы	город Калуга, ул. Центральная, д. 13а
(адрес школы и телефон)	8(4842)513-079
Вид программы	 по степени авторства – модифицированная;
	 по уровню освоения – общекультурная;
	 по уровню сложности – углубленный.
Направленность программы	техническая.
Вид деятельности	Информационная культура и информационные
	технологии.
Срок реализации	3 года, 612 часов.
Возраст учащихся	10-17 лет.
Форма реализации программы	групповая.
Форма организации	Объединение.
образовательной деятельности	
Название объединения	«Робототехника».

Оглавление

Новизна программы заключается в следующем:	5
Во-первых, учащиеся получают знания, используя схемотехнику и технологии современного мирового уровня. В связи с этим, в программу введены элементы технического перевода, необходимого для чтения зарубежных радиосхем	5
Во-вторых, подростки обучаются взаимодействию электронных устройств с электромеханическими устройствами, что создает новое поле для творческой деятельности учащихся.	5
Группы второго года обучения комплектуются из учащихся, прошедших обучение по программе первого года, и учащихся 7-9 классов (13-15 лет): «Радиоуправляемые роботы».	6
Цель программы: формирование творческой личности, владеющей техническими знаниями, умениями и навыками в области роботостроения	8

РАЗДЕЛ 1. «КОМПЛЕКС ОСНОВНЫХ ХАРАКТЕРИСТИК ПРОГРАММЫ»

1.1 Пояснительная записка

В современном мире постоянно изменяются требования к образовательному процессу.

Эти требования изменяются не только по отношению к материально-техническому

обеспечению для проведения занятий и к педагогическому составу образовательного

учреждения, но и к обучающимся на каждом из этапов процесса. Современный человек

должен быть мобильным, и конкурентно способным на рынке труда. Особенно

востребованными сейчас стали профессии инженерно-технической направленности.

Процессы обучения и воспитания не сами по себе развивают человека, а лишь тогда, когда

они имеют деятельностью формы и способствуют формированию тех или иных типов

деятельности.

Деятельность выступает как внешнее условие развития у ребенка познавательных

процессов. Чтобы ребенок развивался, необходимо организовать его деятельность. Значит,

образовательная задача состоит в организации условий, провоцирующих детское

действие.

Такую стратегию обучения легко реализовать в образовательной среде Lego,

которая объединяет в себе специально скомпонованные для занятий в группе комплекты

Lego, тщательно продуманную систему заданий для детей и четко сформулированную

образовательную концепцию.

Межпредметные занятия опираются на естественный интерес к разработке и

постройке различных деталей

Работа с образовательными конструкторами Lego позволяет учащимся в форме

познавательной игры узнать многие важные идеи и развить необходимые в дальнейшей

жизни навыки. При построении модели затрагивается множество проблем из разных

областей знания – от теории механики до психологии, – что является вполне естественным.

Очень важным представляется тренировка работы в коллективе и развитие

самостоятельного технического творчества. Простота в построении модели в сочетании с

большими конструктивными возможностями конструктора позволяют детям в конце урока

увидеть сделанную своими руками модель, которая выполняет поставленную ими же

самими задачу.

Направленность программы: техническая.

Вид деятельности: робототехника.

Вид программы: модифицированная.

Актуальность программы обусловлена тем, что отечественные наука и техника нуждаются в специалистах, которые смогут поднять техническое оснащение различных видов производства на уровень, соответствующий современным мировым стандартам, и сократить отставание от передовых стран в технической области, в том числе и в роботостроении. Кроме того, актуальность данной программы возрастает в условиях интенсивного развития Калужского региона в области автомобильной промышленности, потребности региона в технических кадрах. Исследования ученых доказали, что только в детстве могут быть заложены основы творческой личности, сформирован особый склад ума – конструкторский. Эффективным путем развития устойчивого интереса детей и подростков к науке и технике являются занятия в радиоклубе по программе «Робототехника».

Новизна программы заключается в следующем:

Во-первых, учащиеся получают знания, используя схемотехнику и технологии современного мирового уровня. В связи с этим, в программу введены элементы технического перевода, необходимого для чтения зарубежных радиосхем.

Во-вторых, подростки обучаются взаимодействию электронных устройств с электромеханическими устройствами, что создает новое поле для творческой деятельности учащихся.

В-третьих, создаются условия для профессиональной ориентации подростков в сфере автомобильной промышленности региона. Для этого в рамках программы организуются экскурсии на соответствующие предприятия в Калуге.

Отличительной особенностью данной программы является включение в образовательный процесс многих предметных областей. При построении модели робота вырабатывается умение решать проблемы из разных областей знаний: теория механики, радиоэлектроника, телемеханика, математика, анатомия, медицина, практическая астрономия, психология. На занятиях у учащихся вырабатываются такие практические навыки: умение пользоваться разнообразными инструментами и приборами, устранять простые неисправности в бытовой радиоаппаратуре, умение работать с иностранной технической литературой, составлять техническую документацию на изделие, оформлять авторство и патент на изобретение.

В процессе обучения учащиеся создают действующие экспонаты с искусственным интеллектом. В программе представлена новая методика технического творчества, совмещающая новые образовательные технологии с развитием научно-технических идей и позволяющая организовать высокомотивируемую учебную деятельность в самом современном направлении развития радиоэлектроники – конструирование роботов.

Учащиеся всех групп в ходе обучения выполняют лабораторные работы и сдают по ним зачеты. Все данные лабораторных работ регистрируются в личной тетради учащегося. После сдачи зачетов по лабораторным работам учащиеся переходят к оформлению проекта своего индивидуального робота. Проект оформляется как техническая документация, которая является главным организующим и стимулирующим работу документом.

Проект модели робота состоит из 6 листов формата А4:

- 1. Титульный лист (Название робота, Ф.И.О. и фото автора).
- 2. Технический рисунок робота.
- 3. Схемы устройства робота.
- 4. Перечень используемых электрорадиоматериалов.
- 5. Маршрутный дневник работы.
- 6. Инструкция по эксплуатации.

В процессе работы все изменения и новые дополнения присоединяются с соответствующему по теме листу проекта. Учащийся в процессе работы ведет маршрутный дневник, где указывает предполагаемый объем работы и результаты, подводит итоги и анализирует неудачи.

После завершении работы проводится презентация проекта и действующей модели робота.

Педагогическая целесообразность состоит в том, чтобы, не дожидаясь перестройки учебных заведений в области преподавания основ робототехники, уже сейчас дать знания мирового уровня в популярной форме и развить интерес в будущей профессии робототехника.

Адресат программы. Программа «Робототехника» рассчитана на учащихся школьного возраста. Программа рассчитана на три года обучения. Группы первого года обучения комплектуются из учащихся 4-6 классов (10-12 лет): «Роботы-игрушки».

Группы второго года обучения комплектуются из учащихся, прошедших обучение по программе первого года, и учащихся 7-9 классов (13-15 лет): «Радиоуправляемые роботы».

Группы третьего года обучения комплектуются из учащихся, прошедших обучение по программе второго года (15 -17 лет): «Программируемые роботы».

Возраст учащихся: 10-17 лет.

- первый год обучения учащиеся 10-12 лет;
- второй год обучения учащиеся 13-15 лет;
- третий год обучения учащиеся 15-17 лет.

Особенности организации образовательного процесса

Объем программы: 612 часов.

Срок реализации программы: 3 года.

Форма обучения: очная, групповая и индивидуальная.

Режим занятий:

1 год обучения – 204 часа, 3 раза в неделю по 2 часа;

2 год обучения – 204 часов, 3 раза в неделю по 2 часа;

3 год обучения – 204 часов, 3 раза в неделю по 2 часа.

Форма обучения: очная, очно-заочная, дистанционная.

Особенности набора: свободный.

Форма организации образовательной деятельности: объединение.

Название объединения: «Робототехника»

Вид группы: среднешкольная. **Состав группы:** постоянный.

Методы обучения: словесные, наглядные, практические, проблемные, проектные.

Формы проведения занятий: комбинированные, теоретические, практические, диагностические, лабораторные, контрольные, проектные работы, мастер-классы, моделирование и реализация проектов, практическая продуктивная деятельность, флешмобы, челленджи, акции, онлайн марафоны, квесты.

Управляемость программы

В современных условиях программа может быть реализована в очно-заочной форме и дистанционно с помощью интернет-ресурсов на платформах для проведения онлайн-занятий Zoom и Discord, а также в Skype, социальных сетях и с помощью электронной почты.

Учащиеся могут быть сформированы в группы одного возраста или разных возрастных категорий.

В рамках программы проводят как аудиторные, так и внеаудиторные (самостоятельные) занятия в объединениях (по группам, индивидуально или всем составом объединения).

При реализации программы при наличии условий и согласия руководителя объединения совместно с несовершеннолетними учащимися могут участвовать их родители (законные представители).

В рамках программы педагог может организовывать и проводить массовые мероприятия, создавать необходимые условия для совместной деятельности учащихся и родителей (законных представителей).

Реализация программы может сопровождаться созданием уникальных модулей и частей инфраструктуры в зависимости от профиля и возможностей образовательной организации.

1.2 Цель и задачи

Цель программы: формирование творческой личности, владеющей техническими знаниями, умениями и навыками в области роботостроения.

Задачи программы:

Воспитательные:

- формировать новаторское отношение ко всем сферам жизнедеятельности человека;
- формировать у учащихся целеустремленность и трудолюбие;
- воспитывать бережное отношение к природе и человеку.

Образовательные:

- сформировать умения и навыки в работе с радиоэлектронными приборами и инструментами;
- обучить приемам работы с конструкторской документацией;
- обучить основам электротехники, радиотехники, электроники;
- обучить передовым методам труда в радиоэлектронной промышленности;
- научить разнообразным видам деятельности в области роботостроения и радиоэлектроники.

Развивающие:

- формировать активное творческое мышление;
- стимулировать познавательную активность учащихся посредством включения их в различные виды проектной и конструкторской деятельности;
- развивать интерес учащихся к различным областям радиотехники и роботостроения;
- развивать способность осознанно ставить перед собой конкретные задачи и лобиваться их выполнения.

1.3 Содержание программы УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН (первый год обучения)

No	TEMA	Кол-во часов		
		всего	теория	практика
1.	Вводное занятие. Презентация программы,	4	2	2
	входящая диагностика.			
2.	Элементарные основы электротехники	38	14	24
3.	Элементарные основы радиотехники	30	10	20
4.	Элементарные основы робототехники	44	18	26
5.	Элементарные основы ТРИЗ	28	10	18
6.	Технологии любительского роботостроения	36	12	24
7.	Итоговые конкурсные занятия	20	4	16
8.	8. Промежуточная диагностика.		-	
	ИТОГО:	204	70	134

СОДЕРЖАНИЕ ПРОГРАММЫ Первый год обучения

1. Вводное занятие

Теория. Правила поведения в радиоклубе. Введение в образовательную программу и организация занятий. Основные правила техники безопасности. Основные опасности электрического тока. Личная гигиена при работе. Инструменты роботостроителя (монтажный инструмент, слесарный инструмент).

Практика. Освоение правил работы инструментом, проверка его и возможные способы устранения неисправности.

2. Элементарные основы электротехники

Теория. Краткая история электротехники. Работы отечественных и зарубежных ученых. Значение электричества в жизни человека. Электрический ток, напряжение, сопротивление, емкость, индуктивность — определение, обозначение, единица измерения. Закон Ома. Азбука схем, графическое изображение электрорадиоэлементов.

Практика. Изготовление макетной платы. Работа с навесным монтажом, изготовление элементарных электросхем с выключателями, лампочками, электродвигателями и т.п. Слесарная обработка материалов. Самостоятельная разработка и вычерчивание элементарных электросхем.

3. Элементарные основы радиотехники.

Теория. История радиотехники. Отечественные и зарубежные ученые. Значение радиотехники в жизни людей. Элементарные понятия о полупроводниках. Основные принципы радиосвязи. Ознакомление с простейшими схемами радиопередатчиков и приемников. Элементарные понятия о радиоуправляемых роботах. Источники постоянного и переменного тока. Элементарная схема блока питания.

Практика. Изготовление проводного передатчика и приемника. Изготовление мультивибратора. Изготовление элементарного передатчика и приемника. Настройка и регулировка передатчика и приемника. Творческое экспериментирование с элементами схем.

4. Элементарные основы робототехники.

Теория. История робототехники. Отечественные и зарубежные ученые и изобретатели. Законы робототехники. Элементарные сведения об устройстве роботов. Сравнение элементов робота с элементами живого существа. Параметры и классификация роботов. Сенсорные системы. Устройство управления роботами. Роботы-игрушки. Интеллект и творчество.

Практика. Изготовление схемы управления электродвигателями. Изготовление простейших роботов с механическим датчиком препятствий на основе шасси с электродвигателем.

5. Элементарные основы ТРИЗ.

Теория. Г. С. Альтшуллер – создал теории решения изобретательских задач. Каждый человек изобретатель. Основы планирования решения изобретательских задач. ТРИЗ в робототехнике.

6. Технология любительского роботостроения.

Теория. «Роботы — это школа жизни и двигатель образования». История любительского роботостроения в нашей стране и за рубежом. Конструктор LEGO. Спортивные соревнования роботов. Просмотр видеосюжетов каналов «Рамблер» и «Дискавери» и русскоязычных сайтов по робототехнике. Робоклуб.ru.

Практика. Практическое изучение моделей роботов, изготовленных выпускниками радиоклуба «Робототехник». Оформление рисунка, чертежа своего будущего робота с описаниями, объяснениями каждого элемента робота.

7. Итоговое конкурсное занятие.

Теория. Подведение итогов работы радиоклуба «Робототехник» за год.

Практика. Презентация изготовленной модели робота. Определение победителей, вручение дипломов и призов.

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

(второй гол обучения)

No	TEMA	Кол-во часов		сов
п/п		всего	теория	практика
1.	Вводное занятие, презентация курса.	2	2	-
2.	Основы проекта и конструкторской документации	18	12	6
3.	Основы АРИЗ и ПРИЗ	26	6	20

4.	Основы робототехники	24	16	8
5.	Источники питания роботов	20	10	10
6.	Измерительные приборы	20	8	12
7.	Системы радиоуправления роботами	26	6	20
8.	Механика радиоуправляемых роботов	44	6	38
9.	Хай-тек технологии в любительском роботостроении	18	12	6
10.	Промежуточная диагностика, подведение итогов.	6	2	4
	ИТОГО:	204	80	124

СОДЕРЖАНИЕ ПРОГРАММЫ

второй год обучения

1. Вводное занятие.

Основы техники безопасности при работе на электроустановках. Знакомство с программой второго года обучения и положениями о проводимых робототехнических соревнованиях.

2. Основы проекта и конструкторской документации.

Теория. Основные элементы проекта: 1. Проблема. 2. Поиск. 3. Планирование. 4. Портфолио. 5. Презентация. 6. Продукт. Назначение и необходимость оформления конструкторской документации на модель робота. Требования к оформлению документации на изобретение и патент. Основные элементы технической документации: титульный лист, пояснительная записка, чертежи и принципиальные схемы модели, кинематические схемы, спецификация, необходимые комплектующие материалы, инструкция по эксплуатации.

Практика. Изучение технической документации выпускников радиоклуба. Самостоятельная работа над документацией будущего робота.

3. Основы АРИЗ и ПРИЗ.

Теория. АРИЗ и ПРИЗ. Принципы – приема ТРИЗ. Разделение во времени. Разделение в пространстве. Сделать наоборот. Удвоение (кратность).

Копирование, дробление. Уменьшение – увеличение. Шаги ПРИЗ: 1. Подготовка к работе.

2. Системный подход. 3. Выдвижение гипотез. 4. Отбор гипотез.

4.Основы робототехники.

Теория. Состав, параметры и классификация роботов. Манипуляционные системы. Рабочие органы манипуляторов. Системы передвижения мобильных роботов. Сенсорные системы. Устройства управления роботами. Рекомендации по изготовлению робота.

Практика. Изготовление чертежа системы передвижения мобильного робота и рабочих органов манипуляторов. Чтение кинематических схем. Освоение технического перевода зарубежных схем. Самостоятельная разработка кинематических схем.

5. Источники питания роботов.

Теория. Подбор источника питания для будущего робота. Качественный стабилизатор напряжения. Выбор батареи и аккумуляторов. Технические данные аккумуляторов типа AA (или R 6), (NiCd), (6F 22 (NiMH). Понятие о ёмкости аккумулятора. Зарядные устройства. Принципы зарядки и разрядки аккумулятора. Регулировка зарядного устройства.

Практика. Оформление технической документации на блок питания для робота. Разработка и изготовление блока питания с зарядным устройством на печатной плате в металлическом корпусе с измерительным прибором.

6. Измерительные приборы.

Теория. Принципы измерения электрических величин. Элементарные схемы измерения: тока, напряжения, сопротивления, емкости, индуктивности. Мультиметр. Его технические характеристики. Особенности работы с мультиметром. Устройства осциллографа. Устройства высокочастотного и низкочастотного генераторов. Основные приемы работы для настройки приемников и передатчиков радиоуправления. Специальные приборы для измерения неэлектрических величин.

Практика. Работа с измерительными приборами. Самостоятельное измерение силы тока, величины напряжения, сопротивления, емкости, частоты и периода, с использованием приемов безопасной работы с измерительной техникой.

7. Система радиоуправления роботами.

Теория. Основы приема и передачи информации с помощью радиоволн. Блоксхемы передатчиков и приемников. Кварцевание частоты приемника и передатчика. Телеуправление. Изучение практической схемы дистанционного управления. Работа модулятора (шифратора) передатчика и демодулятора (дешифратора) приемника. Устройство рулевой машинки и других исполнительных механизмов. Принципы регулировки и настройки системы. Основные компоненты беспроводных сетей GSM/GPRS/GPS.

Практическое изготовление приемника и передатчика на частоту в диапазоне 28.0-28.2 МГЦ на макетной плате. Разработка и изготовление печатной платы передатчика и приемника. Настройка и регулировка с использованием радиоизмерительных приборов.

8. Механика радиоуправляемых роботов.

Теория. Механические передачи. Фрикционные передачи. Ременные передачи. Зубчатые передачи (прямозубые, с косыми зубьями, червячные передачи, «мальтийский крест»). Цепные передачи (однорядные, двурядные). Гепоидная передача.

Практика. Работа и изучение передач на стенде с основными передачами. Элементарный расчет передачи. Практическое изготовление зубчатой передачи.

9. Хай-тек технологии в любительском роботостроительстве.

Теория. Определение стиля хай-тек. Основные направления применения стиля в любительском роботостроении. Материалы, конструкции, приборы, элементы механизма, корпуса и т.д., пригодные для изготовления роботов в стиле хай-тек. Хай-тек — строгий минимализм.

Практика. Самостоятельный подбор материала для изготовления робота в стиле хай-тек.

10. Промежуточная диагностика, подведение итогов.

Теория. Подведение итогов работы радиоклуба «Робототехник» за год.

Практика. Презентация изготовленной модели робота. Обсуждение лучших конструкций. Награждение лучших роботостроителей.

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

(третий год обучения)

No	TEMA	Кол-во часов		
п/п	1/П		теория	практика
1.	Вводное занятие, презентация курса.	2	2	-
2.	Теория практического применения АРИЗ и ПРИЗ	29	5	24
3	Мобильные роботы и их перемещение	22	4	18
4.	Искусственный интеллект	10	4	6
5.	Рекомендации по изготовлению роботов	6	2	4
6.	Правила работы над проектом и конструкторской	26	5	21
	документации			
7.	Языки программирования	24	10	14
8	Программирование микроконтроллера АТ	24	16	8
	MEGA8A			
9.	Датчики и их интерфейсы	29	5	24
10.	Приводы роботов и их интерфейсы	26	5	21
11.	Промежуточная и итоговая диагностика.	6 2 4		4
	ИТОГО:	204	60	144

СОДЕРЖАНИЕ ПРОГРАММЫ

третий год обучения

1. Вводное занятие.

Ознакомление с программой на год, особенностями организации занятий по изучению и изготовлению робототизированных систем. Правила безопасного труда на занятиях.

2. Теория практического применения АРИЗ И ПРИЗ.

Теория. Учебно-мозговой штурм. Открытые и закрытые задачи. Системное мышление. Диалектическое мышление. Функциональное мышление. Логическое мышление. РТВ. ОТВСМ. Анализ идей. Построение информационных моделей.

3. Мобильные роботы и их перемещение.

Теория. Автономные и неавтономные мобильные роботы. Мобильная база робота. Мобильные роботы с управлением от компьютера и мобильные роботы с управлением по беспроводному каналу связи.

Практика. Самостоятельный поиск и представление информации о мобильных роботах. Практическое изучение моделей мобильных роботов, изготовленных выпускниками радиоклуба. Самостоятельное управление перемещением робота с выполнением определенных задач.

4. Искусственный интеллект.

Теория. История создания искусственного интеллекта робота. Искусственный интеллект и возможность конструирования человекоподобного робота.

Практика. Самостоятельный поиск и представление информации о роботах с искусственным интеллектом.

5. Рекомендация по изготовлению робота.

Теория. Беседа о необходимости разрабатывать конструкцию робота одновременно с программой, о важности надежной защиты элементов робота от столкновения и падения. Оформление технической документации, дневника робота, создание базы данных — важные условия для удачного завершения начатого дела.

Практическое применение рекомендаций в процессе изготовления робота.

6. Правила работы над проектом и конструкторской документацией.

Теория. Понимание проекта. Актуальность проекта. Ограничение во времени. Определение ресурсов. Анализ и планирование. Основы фиксирования проделанной работы по каждому разделу технической документации. Требования к презентации проекта.

7. Языки программирования.

Теория. Программирование на простейших языках. Программирование в графической среде. Биты, байты, регистры. Микроконтроллеры. Модули МК, их назначение и взаимодействие.

Практика. Самостоятельное написание простейшей программы для мобильного робота на примере программ: программа для управления двигателями, программа по уклонению от препятствий.

8. Программирование микроконтроллера АТ МЕСА8А.

Теория. Общие сведения о микроконтроллере AT MEGA8A. Постоянная память. Оперативная память. Команды. Порты. Синхронизация. Режим программирования. Документы. Программаторы.

Практика. Самостоятельное изготовление программатора и работа с ним. Отладка программ на компьютере.

9. Датчики роботов и их интерфейсы.

Теория. Общие положения о датчиках роботах: датчики соударений, датчики наклона, оптические датчики, фоторезисторы, фототранзисторы, фотодиоды. Инфракрасные датчики. Датчики отражения. Оптокоммутаторы. Детекторы приближений. Датчики положения. Видеокамеры. Звуковые датчики. Гироскопы. Датчики внутреннего состояния работы.

Практика. Экспериментирование с различными датчиками. Самостоятельное подключение датчиков к контроллеру и их регулировка. Измерение и настройка работы датчиков. Самостоятельное изготовление датчиков соударений.

10. Приводы роботов и их интерфейсы.

Теория. Принцип работы интерфейса. Двигатели постоянного тока. Интерфейсы для двигателей постоянного тока. Шаговые двигатели. Интерфейсы для шаговых двигателей. Серводвигатели.

Практика. Самостоятельное изготовление интерфейсов на транзисторах. Самостоятельное изготовление мобильного робота.

11. Промежуточная и итоговая диагностика, подведение итогов.

Теория. Подведение итогов работы радиоклуба «Робототехник» за год.

Практика. Презентация изготовленных моделей роботов. Обсуждение лучших конструкций. Награждение лучших роботостроителей.

1.4 Планируемые результаты

Учащиеся, освоившие программу 1-го года обучения:

должны знать:

- основы техники безопасности при работе с радиоэлектронными приборами и инструментами;
- приемы первой помощи пострадавшему от электрического тока;
- элементарные основы электротехники;
- элементарные основы радиотехники;
- элементарные основы робототехники;
- основы любительского роботостроения;

- элементарные основы ТРИЗ.

должны уметь:

- выполнять простые слесарно-монтажные работы;
- читать радиосхемы, собранные на полупроводниковых приборах;
- самостоятельно изготавливать простые роботизированные устройства;

должны обладать:

- интересом к радиотехнике и робототехнике;
- трудолюбием.

Учащиеся, освоившие программу 2-го года обучения:

должны знать:

- технику безопасности при работе с радиоэлектронными приборами и инструментами;
- правила оформления проекта и конструкторской документации;
- основы робототехники;
- основы механических передач;
- основы хай-тек технологии в роботостроении;
- элементарные основы ТРИЗ.

должны уметь:

- оказать первую помощь пострадавшему от электрического тока;
- пользоваться измерительными приборами;
- выполнять радиоэлектромонтажные работы;
- применять в работе элементы ТРИЗ;
- читать кинематические схемы роботов;
- самостоятельно оформлять проектную документацию и конструировать робототехнические устройства.

должны обладать:

- познавательной самостоятельностью и целеустремленностью;
- аккуратностью и ответственностью в работе.

Учащиеся, освоившие программу 3-го года обучения:

должны знать:

- технику безопасности при работе с радиоэлектронными приборами и инструментами;
- принцип устройства автономных и неавтономных мобильных роботов;
- элементарные основы программирования микроконтроллеров;
- принцип работы датчиков, приводов и их интерфейсов;
- основы ТРИЗ.

должны уметь:

- оказать первую помощь пострадавшему от действия электрического тока;
- программировать микроконтроллеры;
- изготавливать интерфейсы для датчиков и приводов роботов;
- самостоятельно оформлять проект, конструкторскую документацию, изготавливать радиоуправляемых и программируемых роботов;

должны обладать:

- творческой активностью и мотивацией к деятельности;
- готовностью к профессиональной самореализации и самоопределению.

РАЗДЕЛ № 2 «КОМПЛЕКС ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИХУСЛОВИЙ»

2.1 Календарные графики

(первый год обучения, группы 1а и 1б)

Неделя	Тема	Кол-во часов
1.	Основы техники безопасности	2
	Вводное занятие	2
	История электротехники	2
2.	Графическое изображение радиоэлементов	2
	Практическое занятие изготовление макетной платы	2
	Основы технологии паяния	2
3.	Основы слесарного дела	2
	Основные параметры электротехники	2
	Электрический ток и напряжение	2
4.	Закон Ома	2
	Практическое занятие изготовление макетной платы	2
	Подготовка к работе по изготовлению макетной платы	2
5.	Практическая работа с макетной платой	2
	Практическая работа монтаж на макетной плате	2
	Лабораторная работа №1	2
6.	Лабораторная работа №1	2
	Основы радиотехники	2
	Элементы радиоаппаратуры	2
7.	Практическая работа с Р/А	2
	Схемы включения транзисторов	2
	Изучение схем с ОБ и ОЭ	2
8.	Лабораторная работа №2	2
	Лабораторная работа №2	2
	Радиоволны и их распространение	2
9.	Фильтры Н4 и В4	2
, <u> </u>	Лабораторная работа №2	2
	История радиолокации	2
10.	Практическая работа с радиопередатчиком	2
10.	Основы радиоэлектроники	2
11.	Основы ТРИЗа	2
11.	Устройств электродвигателей	2
	Моторедукторы	2
12.	Практическая работа с моторедуктором	2
	Основы робототехники	2
	Закон Ома для замкнутой цепи	2
13.	Графическое изображение р\э	2
	Основы электротехники	2
	Двигатели постоянного тока	2
14.	Графическое изображение р\э и р\а	2
	Чтение радиосхем по р\э	2
	Практическая работа с р\а	2
15.	Лабораторная работа №2	2
	Лабораторная работа №3	2

	Обозначение р\э в иностранных схемах	2
16.	Практическая работа с р\а	2
	Схемы включения транзисторов р-п-р	2
	Схемы включения транзисторов р-п-р	2
17.	Практическая работа с р\а	2
	Лабораторная работа №3	2
	Лабораторная работа №3	2
	Лабораторная работа №3	2
18	Основы техники безопасности	2
	Промунуна смад добото од р	2
19.	Практическая работа с р\а	2 2
19.	Основы электромагнитизма	
	П	2
	Постоянное и переменное магнитное поле	
20.	Магнитомягкие радиоматериалы	2
	Лабораторная работа №4	2
	Практическая работа с р\а	2
21.	Лабораторная работа №4	2
	Блоки питания роботов	2
	Изготовление платы и корпус БП	2
22	Лабораторная работа № 5	2
	Механика робота	2
	Элементарные основы ТРИЗа	2
23	ТРИЗ и основы конструирования	2
	ТРИЗ и любительское роботостроение	2
	ТРИЗ и любительское роботостроение	2
24	Основы любительского роботостроения	2
	Работа с экспонатами к техноиграм	2
	Подготовка к техноиграм	2
25	Проведение техноигр	2
	Проведение техноигр	2
	Восстановление и ремонт роботов	2
26	Схемы управления АС двигателями	2
20	Схемы управления двигателями	2
	Лабораторная работа № 6	2
27	Практическая работа с р\а	2
27	История любительского роботостроения	2
	Проекты выпускников	2
28	Соревнования роботов	2
26	Правила соревнования роботов	2
		2
29	Изучение моделей роботов Кинематика и электроника роботов	2
29	1 1	
<u> </u>	Основы технического рисунка	2 2
20	Основы технического рисунка	
30	Технический рисунок в технодокументах	2
	Подготовка к техноигре	2
21	Проведение техноигры ко дню космонавтики	2
31	Анализ итогов техноигры	2
	Обсуждение технических рисунков	2
	Индивидуальная работа над проектами	2

32	Индивидуальная работа над проектами	2
	Обсуждение и анализ проектов	2
33	Анализ индивидуальных проектов	2
	Подготовка презентаций проектов	2
	Презентации моделей роботов. Работа над ошибками	2
	проектов	
34	Сдача зачетов по радиотехнике	2
	Сдача зачетов по робототехнике	2
	Планирование работы на новый учебный год	2

Календарный график (второй год обучения, группы 2 а и 26; понедельник, среда, пятница)

Неделя	ои год обучения, группы 2 а и 26; понедельник, с Тема	Кол-во часов
1.	Основы техники безопасности	2
	Вводное занятие	2
	Вводное занятие	2
2.	Основы проектов	2
	Темы проектов	2
	Основы робототехники	2
3.	Практическая робототехника	2
	Радиоуправляемые роботы	2
	Лабораторная работа № 7	2
4.	История робототехники	2
	Практическая робототехника	2
	Лабораторная работа № 7	2
5.	Основы и теория ТРИЗа	2
	Практическая робототехника	2
	Анализ ранних проектов	2
6.	Основы презентации проектов	2
	Практическая робототехника	2
	Лабораторная работа № 7	2
7.	Оформление техдокументации	2
	Практическая робототехника	2
	Основы АРИЗа	2
8.	Логика решения проблемы	2
	Основы робототехники	2
	Основы радиопеленга	2
9.	Практическая робототехника	2
	Лабораторная работа № 8	2
	Лабораторная работа № 8	2
10.	Высокочастотный монтаж	2
	Монтажные правила	2
	Метод противоречий в ТРИЗе	2
11.	Основы ТРИЗа	2
	Практическая робототехника	2
	Лабораторная работа № 8	2
12.	Импортные радиодетали	2

	Развертки монтажных схем	2
	Основы проектной деятельности	2
13.	Оформление техдокументации	2
	Работа над проектами	2
	Лабораторная работа № 8	2
14.	Практическая робототехника	2
	Основы ТРИЗа	2
	Мастер –класс по Практическая робототехника P\A	2
15.	Лабораторная работа № 8	2
	Основы радиолокации	2
	Антенны и их элементы	2
16.	Практическая робототехника	2
	Лабораторная работа № 8	2
	Практическая робототехника	2
17.	Основы радиолокации	2
	Практическая робототехника	2
	Лабораторная работа № 8	2
18.	Основы техники безопасности	2
	Основы проекта	2
	Лабораторная работа № 8	2
	Лабораторная работа № 8	2
19.	Основы инфракрасного управления	2
	Практическая робототехника	2
20.	Основы радиолокации	2
20.	Работа с мультиметром и его схема	2
	Работа с мультиметром и его схема	2
21.	Работа с мультиметром	2
	Схема осциллографа	2
	Приемы работы с сциллографом	2
22.	Специальные измерительные приборы	2
	Вакцумметр и Анализатор спектра	2
	Газовые анализаторы	2
23.	Системы управления роботами	2
23.	Шифратор (схема)	2
	Дешифратор (схема)	2
24.	Лабораторная работа № 9	2
24.	Подготовка к техноиграм	2
	Итоги проведеннойтехноигры	2
25.	Практическая робототехника	$\frac{2}{2}$
23.	Механические передачи	2
	Механические передачи Механика робота	2
26.	Лабораторная работа № 3А	2
20.	Расчет зубчатой передачи	2
	Гасчет зуочатой передачи Кинематические схемы	2
27.		2
۷1.	Кинематические схемы	2
	Манипуляторы	2
20	Подготовка к техноиграм	
28.	Техноигра ко дню Космонавтики	2
<u> </u>	Итоги проведеннойтехноигры	2 2

29.	Работа над техдокументацией	2
	Работа над проектами	2
	Работа над проектами	2
30.	Репетиции презентаций	2
	Работа над ошибками презентаций	2
	Подготовка экспонатов к выставке	2
31.	Подготовка КТИ ко Дню радио	2
	Техноигра ко дню Радио	2
	Работа над ошибками в Т.И.	2
32.	Хай тек в современной робототехнике	2
	Практический хай тек	2
	Работа с генераторами Н4 и В4	2
33.	Любительская робототехника	2
	Космическая робототехника	2
	Военная робототехника	2
34.	Презентации моделей роботов	2
	Перспективы работы на следующий год	2
	Награждение лучших воспитанников	2

Календарный график (третий год обучения)

Неделя	Тема	Кол-во
		часов
1.	Основы техники безопасности	2
	Вводное занятие. Обсуждение планов 3-го года обучения.	2
	История робототехника	2
2.	Айзек Азимов и роботехники	2
	Основы презентации	2
	Основы ТРИЗа	2
3.	Работа над ошибками	2
	Лабораторная работа №11	2
	Основы программирования	2
4.	Практическая роботехника	2
	Практическая роботехника	2
	Презентация новых проектов	2
5.	Искусственный интеллект	2
	Роботы «Движение по линии»	2
	Схемы роботов «Движение по линии»	2
6.	Практическая роботехника	2
	Хай тек в роботах	2
	Практический опыт в ТРИЗе	2
7.	ТРИЗ в любительской робототехнике	2
	Лабораторная работа №11	2
	Практическая роботехника	2
8.	Мобильные роботы	2
	Повторение основы проектов	2
	Практическое применение АРИЗа	2
9.	Алгоритмы РИЗ	2
	Лабораторная работа №11	2

	Презентация новых проектов	2
10.	Практическая роботехника	2
10.	Основы технической документации	2
	Проектные поиски	2
11.	Практическая роботехника	2
	Лабораторная работа №11	2
12	Устройство шагового двигателя	2 2
12.	Мозговой штурм в ТРИЗе	
	Основы презентации	2
12	Технический рисунок	2 2
13.	Практическая роботехника	
	История советской робототехники	2
4.1	Основы ТРИЗа	2
14.	Работа над проектами	2
	Усилители Н4 и В4	2
4 =	Практическая роботехника	2
15.	Работа над проектами	2
	Лабораторная работа №12	2
1.0	Правила оформления Т.Д	2
16.	Работа над проектами	2
	Практическая роботехника	2
	Практическая роботехника	2
17.	Основы техники безопасности	2
	Механические передачи. Промежуточная диагностика.	2
18.	Передаточные числа и их расчет	2
19.	Основы и устройства редукции	2
	Мозговой штурм в ТРИЗе	2
	Практическая роботехника	2
20.	Программирование АТМЕ-8	2
	Схемы программаторов	2
	Программирование АТМЕ-8	2
21.	Лабораторная работа №13	2
	ОЗУ и ПЗУ. Оперативные ЗУ, постоянные ЗУ.	2
	Порты ввода и вывода	2
22.	Режимы программирования	2
	Режимы программирования	2
	Работа на компьютере	2
23.	Лабораторная работа №14	2
	Отладка программ	2
	Отладка программ	2
24.	Подготовка к техноиграм	2
	Проведение техноигры	2
	Итоги техноигры	2
25.	Ультрозвуковые датчики	2
	Спецификации в техдокументации	2
	Внутренние датчики робота	2
26.	Элементарное зрение робота	2
	Устройство видеокамеры	2
	Практическая роботехника	2
27.	Практическая роботехника	2

	Лабораторная работа №15	2
	Изготовление датчиков	2
28.	Подготовка к техноиграм	2
	Техноигра ко дню Космонавтики	2
	Итоги проведенной техноигры	2
29.	Приводы роботов	2
	Практическая робототехника	2
	Искусственный интеллект	2
30.	Перемещение мобильных роботов	2
	Практическая робототехника	2
	Рекомендации по изготовлению роботов	2
31.	Рекомендации по изготовлению роботов	2
	Практическое применение ТРИЗа	2
32.	Схемы управления двигателями	2
	Работа над проектами	2
	Работа над проектами	2
33.	Работа над проектами	2
	Презентации моделей роботов	2
	Презентации моделей роботов	2
34.	Перспективы работы на следующий год	2
	Награждение лучших воспитанников	2
	Итоговая диагностика.	2

2.2 Условия реализации программы

Материально-техническое обеспечение программы

- 1. Оборудованный учебный кабинет.
- 2. Компьютеры с выходом в Интернет.
- 3. Мультимедийный проектор, экран.
- 4. Комплекты специальной учебной литературы.
- **5.** Комплект радиоизмерительных приборов (Г3-102; С1-18; Г4-102; ГСС; В7-9; Г3-33).
- 6. Комплект мультиметров.
- 7. Комплект паяльников на 36 вольт.
- 8. Комплект слесарно-монтажного инструмента и канцелярских принадлежностей.
- **9.** Комплект электрических машин (сверлильный станок, деревообрабатывающий станок, дрель, электроточило).
- 10. Комплекты электрорадиоматериалов.
- 11. Комплекты радиоэлементов для роботостроения.
- 12. Комплекты для изготовления роботизированных систем.

Вышедшая из строя бытовая электроника, офисная техника, автотехника, неисправные радиоуправляемые платформы.

Методический и дидактический материалы

Занятия по программе организованы по принципу непрерывного обучения.

Программа реализуется в течение трех лет.

Первый год обучения включает в себя систему элементарных знаний по основам электротехники, радиотехники и робототехники.

В процессе обучения применяется в основном диалоговый метод, а также проблемный метод. Основным критерием результативности первого года обучения является способность учащегося самостоятельно решать простейшие задачи при изготовлении элементарных роботизированных устройств. В конце первого года обучения учащийся совместно с педагогом выбирает направление работы по конкретной теме.

Второй год обучения включает в себя обучение знаниям по направлению, выбранному в конце первого года обучения. Основным методом обучения на данном этапе является *проектный метод*. Также используются *диалог и дискуссии*. Основным критерием освоения программы второго года обучения является способность воспитанника самостоятельно ставить перед собой задачу, осознанно и конструктивно ее решать.

Третий год обучения заключается в получении обширных знаний в области робототехники и роботостроения. На данном этапе учащиеся проводят самостоятельные исследования по выбранной теме с привлечением других участников группы (изготовление программируемых роботов любого уровня сложности требует коллективных усилий). Основным критерием освоения программы третьего года является способность учащихся к организации и планированию при решении практических задач, самостоятельной оценке результативности действий, выбора способа действий.

На каждом этапе педагог, взаимодействуя с авторами, постоянно должен поддерживать интерес к процессу обучения и изготовления модели робота. В процессе обучения дается четкое и однозначное определение роботу — как замене человека в опасном, вредном и монотонном труде. Лозунг: «Каждый робот должен иметь профессию» — является основным на занятиях радиоклуба.

Основной *подход* к обучению – *личностно-ориентированный*. В начале обучения педагог (путем тестовых заданий, наблюдений) определяет уровень школьных знаний, способности и возможности каждого ребенка. Все это учитывается в дальнейшей работе с ним: определяется образовательный маршрут ребенка, степень сложности изготавливаемого им робота, особенности взаимодействия с ним в процессе обучения.

Основной *метод*, используемый на занятиях, - *проектный*. Он максимально приближен к практике и предполагает активную исследовательскую и творческую деятельность, которая нацелена на решение учеником конкретной задачи.

Основная *форма обучения* — учебно-исследовательская деятельность, в результате которой развиваются творческие способности, самостоятельность, инициатива и стремление подростка к самореализации.

Основной *принцип* организации учебно-воспитательного процесса - «Делай как я, делай со мной, делай лучше меня».

Используемые формы проведения занятий:

- ✓ лекции;
- ✓ демонстрации видео сюжетов о робототехнике;
- ✓ беседы, дискуссии;
- ✓ индивидуальная практическая работа;
- ✓ коллективные творческие дела (командная работа);
- ✓ экскурсии на предприятия промышленности;
- ✓ встречи с интересными людьми (представителями промышленных предприятияй различных специальностей), выпускниками;
- ✓ мастер-классы специалистов;

Одной из новых форм, используемых в образовательном процессе радиоклуба, являются *психологические тренинги*. Для учащихся педагогом-психологом разработан и внедряется курс, направленных на развитие воображения и творческого мышления.

Основная форма подведения итогов по каждой теме — анализ достоинств и недостатков конструкций, изготовленных обучающимися радиоклуба. В конце года, в качестве подведения итогов работы за год, организуется кибер-выставка «Научнотехническая инсталляция в стиле хай-тек — «Изобретая будущее». Кроме этого, обучающиеся ежегодно участвуют в городских и областных выставках технического творчества учащихся.

Для отслеживания результативности программы, используется *психолого- педагогический мониторинг* (приложение 1).

Дидактическое и учебно-методическое обеспечение включает в себя информационные плакаты, схемы, рабочие тетради и техническую документацию обучающихся, видеофильмы и диафильмы технической тематики.

Основными принципами обучения являются:

- **1.** Научность. Этот принцип предопределяет сообщение обучаемым только достоверных, проверенных практикой сведений, при отборе которых учитываются новейшие достижения науки и техники.
- **2.** Доступность. Предусматривает соответствие объема и глубины учебного материала уровню общего развития обучающихся в данный период, благодаря чему, знания и навыки могут быть сознательно и прочно усвоены.
- **3.** Связь теории с практикой. Обязывает вести обучение так, чтобы обучаемые могли сознательно применять приобретенные ими знания на практике.
- **4.** Воспитательный характер обучения. Процесс обучения является воспитывающим, обучающийся не только приобретает знания и нарабатывает навыки, но и развивает свои способности, умственные и моральные качества.
- **5.** Сознательность и активность обучения. В процессе обучения все действия, которые отрабатывает обучающийся, должны быть обоснованы. Нужно учить, обучаемых, критически осмысливать, и оценивать факты, делая выводы, разрешать все сомнения с тем, чтобы процесс усвоения и наработки необходимых навыков происходили сознательно, с полной убежденностью в правильности обучения. Активность в обучении предполагает самостоятельность, которая достигается хорошей теоретической и практической подготовкой и работой педагога.
- **6.** Наглядность. Объяснение техники сборки робототехнических средств на конкретных изделиях и программных продукта. Для наглядности применяются существующие видео материалы, а также материалы своего изготовления.
- **7.** Систематичность и последовательность. Учебный материал дается по определенной системе и в логической последовательности с целью лучшего его освоения. Как правило этот принцип предусматривает изучение предмета от простого к сложному, от частного к общему.
- **8.** Прочность закрепления знаний, умений и навыков. Качество обучения зависит от того, насколько прочно закрепляются знания, умения и навыки учащихся. Не прочные знания и навыки обычно являются причинами неуверенности и ошибок. Поэтому закрепление умений и навыков должно достигаться неоднократным целенаправленным повторением и тренировкой.
- **9.** Индивидуальный подход в обучении. В процессе обучения педагог исходит из индивидуальных особенностей обучающихся.

Кадровое обеспечение:

Реализация данной программы предполагает следующих специалистов:

- 1. Педагог дополнительного образования.
- 2. Педагог-психолог, обеспечивающий психологическое сопровождение программы.

Критерии отбора педагогов:

- профессионально-педагогическая компетентность: наличие теоретической и практической подготовки, в соответствии с профилем деятельности; профессионально-педагогической информированности; умение творчески применять имеющиеся знания на практике; программировать свою деятельность; анализировать и развивать свой опыт с учетом современных условий; знания основных законодательных и нормативных документов по вопросам образования и защиты прав обучающихся;
- духовно- нравственные качества, эрудиция, эмпатия и креативность, способность принимать решение и нести за них ответственность;
- ориентированность на принципы гуманизма.

2.3 Формы контроля и аттестации

Формы контроля: текущий, промежуточный, итоговый.

Текущий контроль осуществляется регулярно преподавателем на занятиях. Включает в себя:

- проведение рефлексии после каждого занятия;
- выполнение заданий.

Промежуточный контроль в течение реализации программы осуществляется два раза в форме проведения тестовых заданий.

Итоговый контроль подводит итоги реализации программы и проходит в форме открытого занятия.

Формы отслеживания результатов

Основная *форма подведения итогов* по каждой теме — анализ достоинств и недостатков конструкций, изготовленных обучающимися клуба. В конце года, в качестве подведения итогов работы за год, организуется кибер-выставка «Научно-техническая инсталляция в стиле хай-тек — «Изобретая будущее». Кроме этого, обучающиеся ежегодно участвуют в городских и областных выставках технического творчества учащихся.

Для отслеживания результативности программы, используется *психолого- педагогический мониторинг* (приложение 1).

2.4 Оценочные материалы

Система диагностики результативности программы

Ļ	Направление	Параметры	Методы	Методики
Рез-т	диагностики	диагностики	диагностики	
1	2	3	4	5
Обучение	I. Теоретические ЗУН	Владение основными понятиями, умениями	Опрос, наблюдение	-
	II. Практическая творческая деятельность учащихся	Личностные достижения учащихся в процессе усвоения программы	Анализ творческой деятельности: изготовление роботизированных устройств, защита проектов, участие в городских и региональных выставках; метод наблюдения; метод экспертных оценок.	-
Развитие	І.Особенности	Работоспособность	Тестирование	Методика «Таблицы Шульте»
	личностной сферы	Ориентация на успех	Тестирование, метод наблюдения	Методика «Успеха и боязнь неудачи (А.Реан)»
		Готовность к саморазвитию	Тестирование	Методика «Готовность к саморазвитию»
	II. Познавательная сфера	Мотивация	Тестирование	Методика «Лесенка побуждений Л.И.Божович, А.К. Марков»
		Внимание	Тестирование, наблюдение	«Изучение внимания у школьников (Гальперин П.Я, Кабылицкая С.Л.)
		Кругозор	Анкетирование, Беседа	Анкета «Кругозор»
		Творческое мышление	Тестирование, наблюдение	Методика «Тест креативности О.И.Мотков»
Воспитание	I. Нравственная сфера	Ценностные ориентации	Тестирование	Опросник «Ценностные ориентации М.Рокича»
	II. Социальные отношения	Удовлетворенность отношениями в группе, положение личности в коллективе, сплоченность коллектива	Тестирование, наблюдение	«Мотивы участия в делах коллектива», «Методика изучения социально-психологического климата группы»
	III.Профессиональн ое самоопределение	Профессиональные намерения, готовность к выбору профессии	Тестирование	Методика Дж. Голланда «Профессиональный тип личности»

2.5 Методические материалы

Образовательный процесс основывается на следующих принципах:

- принцип научности;
- принцип систематичности;
- принцип доступности учебного материала;
- принципа наглядности;
- принципа сознательности и активности;
- принцип прочности;
- принцип индивидуализации.

Таким образом, основными методами обучения по программе являются:

- 1. Проблемно-развивающие методы:
 - показательный (изложение учебного материала с созданием проблемных ситуаций и показом способов их разрешения в науке и практике);
 - диалогический (организация диалога с обучающимися);
 - эвристический (сочетание изложения учебного материала с самостоятельной деятельностью обучающихся по решению учебных проблем);
 - исследовательский (организация творческой самостоятельной деятельности по решению учебных проблем)
- 2. Методы преподавания:
 - рассказ;
 - объяснение;
 - беседа;
 - показ-демонстрация.
- **3.** Методы обучения:
 - слушание;
 - осмысление;
 - упражнение;
 - изучение первоисточников;
 - моделирование;
 - видеометод;
 - практическая работа;
 - учебное исследование.
- 4. Интерактивные методы:
 - дискуссии, дебаты;
 - тренинги;

- «мозговой штурм»;
- соревнования;
- реклама собственных проектов.
- **5.** Игровые методы:
 - ролевая игра (акцент делается на общение);
 - деловая игра (акцент делается на обучение);
 - интеллектуальная игра;
 - настольные игры.

2.6 Библиография

Литература

- **1.** Альтшуллер Г.С., Вёрткин И.М. Как стать гением: Жизненная стратегия творческой личности Минск, "Беларусь", 1994 г.,
- 2. Барсуков А. Кто есть кто в робототехнике. Справочник ДМК-ПРЕСС, Москва, 2005
- **3.** Борисов В.Г. Кружок радиотехнического конструирования. Пособие для руководителей кружков. М., Просвещение, 1996
- **4.** Быстров Ю.А., Мироненко Н.Г. Электронные цепи и устройства. Учебное пособие для ВУЗов М., Высшая школа, 1989
- **5.** Гульчевская В.Г., ГульчевскаяН.Е. Современные педагогические технологии. Ростов-на-Дону: Издательство-РИПК и ПРО,1999.
- 6. Кублановский Я.С. Тиристорные устройства М., Радио и связь, 1987
- 7. Ланин Н.Я. Формирование познавательных интересов учащихся на уроках физики. Книга для учителей - М., Просвещение, 1985
- 8. Ломов Б. Ф. Научно-технический прогресс и средства умственного развития человека // Психологический журнал. 1985. №6.
- 9. Макаренко А. С. Коллектив и воспитание личности. М., 1972.
- 10. Макаренко А.С. Сочинения в семи томах. М.: Изд-во АПН РСФСР, 1959-1960.
- 11. Мазур И.И. Управление проектами. М.,2005.
- 12. Малинин Р.М. Справочник радиолюбителя-конструктора М., Радио и связь, 1977.
- **13.** Новикова Т.Д. Проектные технологии на уроках и во внеурочной деятельности // Народное образование. -2000. № 7
- 14. Половинкин А.И. Основы инженерного творчества. М., 1988.
- **15.** Предко М. Создайте робота своими руками на РІС микроконтроллере, Пер. с англ.яз., М. ДМК, ПРЕСС 2006.
- 16. Самородский П.С. Основы разработки творческих проектов. Брянск. 1995.

- **17.** Смит Б.Э. Архитектура и программирование микропроцессора, Пер. с англ. М., ТОО «Конкорд», 1992
- 18. Токхейм Г. Цифровая электроника для начинающих, Пер. с анг. М., Мир, 1992
- **19.** Уитсон Дж. 500 практических схем на ИС, Пер. с англ. М., Мир, 1992
- 20. Фодор Ж. Операционные системы, Пер. с франц. М., Мир, 1989
- 21. Фрей К. Проектный метод.- Берлин: Бельц, 1997.
- 22. Хокинс Г. Цифровая электроника для начинающих, Пер. с англ. М., Мир, 1992
- 23. Шеик К. Полупроводниковаясхемотехника, Пер. с нем. М., Мир, 1993
- **24.** Электронная книга «Введение в ТРИЗ. Основные понятия и подходы». Официальное издание Фонда Г.С. Альтшуллера: http://www.triz-ri.ru/soft/e-books.asp
- **25.** Юревич Е. Основы робототехники, 2-издание, Учебное пособие БХВ Петербург, 2005.
- Интернет-сайты: www.geti.iut-nimes.fr; www.k-team.com; www.automatesintelligents;
 www.pekee.com; www/vieartificielle.com; http://perso.libertysurf.fr/p.may;
 www.123avr.com; www.kazvs.ru.
- Научно-познавательные телепрограммы по каналам «Дискавери», «Рамблер».

СПИСОК ЛИТЕРАТУРЫ ДЛЯ УЧАЩИХСЯ

- 1. Барсуков А. Кто есть кто в робототехнике. Справочник ДМК-ПРЕСС, Москва, 2005
- **2.** Сворень Р.А. Электроника шаг за шагом: Практическая энциклопедия юного радиолюбителя. М.: Детская литература, 1986.
- 3. Седов Е.А. Мир электроники. М.: Молодая гвардия, 1990.
- 4. Заворотов Е.А. От идеи до модели. М.: просвещение, 1988.
- 5. Комский Д.М. Электронные автоматы и игры. М.: Энергоиздат, 1981.
- 6. Зеленский В.А. Бытовые электронные автоматы. М.: Радио и связь, 1989.
- 7. Конструкции юных радиолюбителей. М.: Радиосвязь, 1989.
- **8.** Перегудов М. «Бок о бок с компьютером». М. Высшая школа, 1987.
- 9. Смирнов Ю.М. Интеллектуализация ЭВМ. М. Высшая школа, 1989.
- 10. Кабельные телепередачи «Дискавери»: «Битвы роботов», «Техноигры»

ИНТЕРНЕТ-РЕСУРСЫ

- 5. www.school.edu.ru/int
- 6. http://www.prorobot.ru
- 7. http://www.nnxt.blogspot.ru
- 8. http://www.ielf.ucoz.ru
- 9. <u>http://www.fiolet-korova.ru</u>

- 10.
- 11. 12.
- http://www.mindstorms.ru http://www.lego56.ru http://www.robot-develop.org http://www.lego.detmir.ru
- 13.